Heat shock response protects human peritoneal mesothelial cells from dialysate-induced oxidative stress and mitochondrial injury.

نویسندگان

  • Hung-Tien Kuo
  • Hsiang-Wen Chen
  • Hui-Hsu Hsiao
  • Hung-Chun Chen
چکیده

BACKGROUND Chronic peritoneal dialysis (PD) is one of the major therapies for uremic patients. However, the peritoneal mesothelial cells (PMCs) are subject to the injury by bioincompatible dialysates. The aim of this study is to investigate the protective roles and mechanisms of heat shock response in PMCs. METHODS Primary cultured human PMCs (HPMCs) were subjected to commercial peritoneal dialysates. The cell viability was assayed by MTT test and Annexin V assay. The expression of HSPs was detected by Western blots analysis. Intracellular hydrogen peroxide and superoxide anion were detected using H(2)DCFDA and dHE probe, respectively, with flow cytometry. The mitochondrial membrane potential (DeltaPsim) of HPMCs was evaluated using JC1 probe with flow-cytometry. RESULTS Exposure of HPMCs to 1.5%, 2.5%, and 4.25% dextrose, and 7.5% icodextrin dialysates, respectively, for 60 min resulted in significantly accumulation of intracellular reactive oxygen species (ROS), DeltaPsim loss, and cell death in HPMCs. Amino acid dialysates exhibited no significant cytotoxicity. Adjusting the acidity in 1.5% dextrose and icodextrin dialysate significantly attenuated the dialysate-induced ROS generation and cell death in HPMCs. Heat pretreatment (41 degrees C, 30 minutes), which induced HSP 27 and 72 syntheses, significantly attenuated the dialysate-induced intracellular ROS accumulation, Dym loss, and cell death in HPMCs. CONCLUSIONS In conclusion, the acidic bioincompatible dialysates induce oxidative stress, DeltaPsim loss, and subsequent cell death in HPMCs. Amino acid dialysates is more biocompatible than glucose and icodextrin dialysates to HPMCs. Heat shock response protects HPMCs from the bioincompatible dialysates-induced cellular damage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dialysate-Glucose-Induced Oxidative Stress and Mitochondrial-Mediated Apoptosis in Human Peritoneal Mesothelial Cells

Human peritoneal mesothelial cells (HPMCs) are a critical component of the peritoneal membrane and play a pivotal role in dialysis adequacy. Loss of HPMCs can contribute to complications in peritoneal dialysis. Compelling evidence has shown that high-dialysate glucose is a key factor causing functional changes and cell death in HPMCs. We investigated the mechanism of HPMC apoptosis induced by h...

متن کامل

Translational Physiology Evidence for HSP-mediated cytoskeletal stabilization in mesothelial cells during acute experimental peritoneal dialysis

Endemann M, Bergmeister H, Bidmon B, Boehm M, Csaicsich D, Malaga-Dieguez L, Arbeiter K, Regele H, Herkner K, Aufricht C. Evidence for HSP-mediated cytoskeletal stabilization in mesothelial cells during acute experimental peritoneal dialysis. Am J Physiol Renal Physiol 292: F47–F56, 2007; doi:10.1152/ajprenal.00503.2005.—Low biocompatibility of peritoneal dialysis fluid (PDF) injures mesothelia...

متن کامل

Evidence for HSP-mediated cytoskeletal stabilization in mesothelial cells during acute experimental peritoneal dialysis.

Low biocompatibility of peritoneal dialysis fluid (PDF) injures mesothelial cells and activates their stress response. In this study, we investigated the role of heat shock proteins (HSP), the main cytoprotective effectors of the stress response, in cytoskeletal stabilization of mesothelial cells in experimental peritoneal dialysis. In cultured human mesothelial cells, cytoskeletal integrity wa...

متن کامل

Protective Effect of Trehalose Against H2O2-induced Cytotoxicity and Oxidative Stress in PC-12 Cell Line and the Role of Heat Shock Protein-27

Background: Oxidative stress has been shown to be an important factor, which plays a significant role in the pathogenesis of neurodegenerative disorders. Heat Shock Protein-27 (HSP-27) has been implicated in antioxidant responses against oxidative stress. Trehalose is a natural disaccharide widely used in a variety of food products with demonstrated protective effects against several neurodegen...

متن کامل

Myricitrin Protects Cardiomyocytes from Hypoxia/Reoxygenation Injury: Involvement of Heat Shock Protein 90

Modulation of oxidative stress is therapeutically effective in ischemia/reperfusion (I/R) injury. Myricitrin, a naturally occurring phenolic compound, is a potent antioxidant. However, little is known about its effect on I/R injury to cardiac myocytes. The present study was performed to investigate the potential protective effect of myricitrin against hypoxia/reoxygenation (H/R)-induced H9c2 ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association

دوره 24 6  شماره 

صفحات  -

تاریخ انتشار 2009